Semantic Theory Lecture 13: Discourse Semantics I

Manfred Pinkal FR 4.7 Computational Linguistics and Phonetics Summer 2014

A Problem with Definite NPs

Standard type-theoretic representation of definite NPs:

the $\Rightarrow \lambda F \lambda G \exists y [\forall x (F(x) \leftrightarrow x=y) \land G(y)]$

the sun $\Rightarrow \lambda G \exists y [\forall x [sun'(x) \leftrightarrow x=y] \land G(y)]$

the sun is shining $\Rightarrow \exists y [\forall x [sun'(x) \leftrightarrow x=y) \land shine'(y)]$

the student is working $\Rightarrow \exists y [\forall x [stud'(x) \leftrightarrow x=y) \land work'(y)]$

Context-dependent expressions

- Deictic expressions depend on the physical utterance situation:
 - I, you, now, here, this, ...
- Anaphoric expressions refer to the linguistic context / previous discourse:
 - he, she, it, then, ...

A simple context theory

- Model contexts as vectors: sequences of semantically relevant context data with fixed arity.
- Model meanings as functions from contexts to denotations – more specifically, as functions from specific context components to denotations.

- Context $c = \langle a, b, l, t, r \rangle$
 - *a* speaker
 - b addressee
 - I utterance location
 - *t* utterance time
 - r referred object

 $[I]^{M,g,c} = utt(c) = a$ $[you]^{M,g,c} = adr(c) = b$ $[here]^{M,g,c} = loc(c) = l$ $[now]^{M,g,c} = time(c) = t$ $[this]^{M,g,c} = ref(c) = r$

Type-theoretic context semantics

- Model structure: $M = \langle U, C, V \rangle$
 - U model universe
 - C context set
 - V value assignment function that assigns non-logical constants functions from contexts to denotations of appropriate type.

Interpretation:

- $[\alpha]^{M,h,c} = V(\alpha)(c)$, if α is a non-logical constant
- $\llbracket \alpha \rrbracket^{M,h,c} = h(\alpha)$, if α is a variable
- $\llbracket \alpha(\beta) \rrbracket^{M,h,c} = \llbracket \alpha \rrbracket^{M,h,c}(\llbracket \beta \rrbracket^{M,h,c})$

An example

- I am reading this book ⇒ read'(this-book')(I')
- $[read'(this-book')(l')]^{M,h,c} = 1$
 - iff $[read']^{M,h,c}([this-book']^{M,h,c})([l']^{M,h,c}) = 1$
 - iff V(read')(ref(c))(utt(c)) = 1
- Context-invariant expressions are constant functions:
 - V(read')(c) = V(read')(c') for all c, $c' \in C$

Context-dependence of definite NPs

- Definite NPs pick an appropriate object from context.
 - The student is working
 - $\exists y [\forall x [student'(x) \leftrightarrow x=y) \land work'(y)]$ (??)
- Utterances typically contain several noun phrases referring to different objects:
 - The student is reading the book in the library
- Noun phrases may refer to different objects of the same type, in one utterance situation:
 - the book
 - the blue book

More context-dependent expressions

Semantic context dependence is a pervasive property of natural language:

- (1) **Every student** must be familiar with the basic properties of first-order logic
- (2) It is hot and sunny everywhere
- (3) John **always** is late
- (4) Bill has bought an expensive car
- (5) Another one, please!

A Problem with Indefinite NPs

 $a \Rightarrow \lambda P \lambda Q \exists x [P(x) \land Q(x)]$

a student $\Rightarrow \lambda Q \exists x [student'(x) \land Q(x)]$

a student is working $\Rightarrow \exists x[student'(x) \land work'(x)]$

Indefinite Noun Phrases

- A student is working
 - $\Rightarrow \exists x [student'(x) \land work'(x)]$
 - she $\Rightarrow \lambda P.P(x)$
 - She is successful \Rightarrow successful'(x)
 - A student is working. She is successful.
 ⇒ ∃x[student'(x) ∧ work'(x)] ∧ successful'(x)
- Indefinite noun phrases establish the context for later reference, they introduce new reference objects:
 - A student is working. She is successful.
- Type-theoretic semantics cannot model this effect.

Discourse Semantics

- Natural-language meaning and context interact in two ways:
 - Context determines the utterance meaning.
 - The meaning of the utterance changes the context.
- The "context change potential" is part of the meaning of natural-language expressions.
- Division of labor between definite and indefinite NPs:
 - Indefinite NPs introduce new reference objects
 - Definite NPs refer to "old" or "familiar" reference objects

Discourse referents

Reference objects established in discourse need not be specific entities:

If you have a pencil or a ball pen, could you please give it to me?

Someone – whoever that may be – will eventually find out. That person will tell others, and everyone will be terribly upset.

Discourse Representation Structures

DRS (Preliminary Version)

- A discourse representation structure (DRS) K is a pair (U_κ, C_κ), where
 - U_κ is a set of discourse referents
 - C_K is a set of conditions

Conditions:

- $R(u_1, ..., u_n)$ R an n-place relation, $u_i \in U_K$
- u = v $u, v \in U_K$
- u = a $u \in U_K$, a is proper name

Discourse Representation Theory

ху	
farmer(x)	
donkey(y)	
owns(x, y)	

x y z u	
farmer(x)	
donkey(y)	
owns(x, y)	
z = x	
u = y	
beat(z, u)	

DRS (Basic Version)

- A discourse representation structure (DRS) K is a pair (U_K, C_K), where
 - U_K is a set of discourse referents
 - C_K is a set of (reduced of reducible) conditions

Reduced conditions:

- R(u₁, ..., u_n)R an n-place relation, $u_i \in U_K$
- u = v $u, v \in U_K$
- u = a $u \in U_K$, a is proper name

Reducible conditions:

Conditions of form α or α(x₁, ..., x_n), where α is a context-free parse tree.

DRS (Basic Version)

- A discourse referent (DR) u is free in DRS
 - $\mathbf{K} = \langle U_{\mathrm{K}}, C_{\mathrm{K}} \rangle$
 - if u is free in one of K's conditions,
 - and $u \notin U_{K}$.
- A DRS K is closed iff no DR occurs free in K.
- A reducible (fully reduced) DRS is a DRS which contains (does not contain) reducible conditions.

DRS Construction Algorithm

Input:

- a text $\Sigma = (S_1, ..., S_n)$
- a DRS K_0 (= $\langle \emptyset, \emptyset \rangle$, by default)
- Repeat for i = 1, ..., n:
 - Add parse tree P(S_i) to the conditions of K_{i-1}.
 - Apply DRS construction rules to reducible conditions of K_i, until no reduction steps are possible any more.
 - The resulting DRS is K_n, the discourse representation of text (S₁, ..., S_n).

Construction Rule for Indefinite NPs

Triggering Configuration:

- α is reducible condition in DRS K, containing [s [NP β] [VP γ]] or [VP [V γ] [NP β]] as a substructure.
- β is εδ, ε indefinite article
- Action:
 - Add a new DR x to U_{K} .
 - **Replace** β in α by x.
 - Add $\delta(x)$ to C_K .

Construction Rule for Pronouns

Triggering Configuration:

- α is reducible condition in DRS K, containing [s [NP β] [VP γ]] or [VP [V γ] [NP β]] as substructure.
- β is a personal pronoun.
- Action:
 - Add a new DR x to U_{K} .
 - **Replace** β in α by x.
 - Select an appropriate DR $y \in U_K$, and add x = y to C_K .

Construction Rule for Proper Names

Triggering Configuration:

- α is reducible condition in DRS K, containing [s [NP β] [VP γ]] or [VP [V γ] [NP β]] as substructure.
- β is a proper name.
- Action:
 - Add a new DR x to U_{K} .
 - **Replace** β in α by x.
 - Add $x = \beta$ to C_K .

Jones owns a book which Smith adores.

33

Construction Rule for Relative

Triggering configuration:

- $\alpha(x)$ is reducible condition in DRS K, containing $[N' [N' \beta] [RC \gamma]]$ as a substructure
- γ is relative clause of the form δε, where δ is a relative pronoun and ε a sentence with an NP gap t, δ and t are coindexed.

Actions:

- Remove $\alpha(x)$ from C_K.
- Add $\beta(x)$ to C_{κ} .
- Replace the NP gap in ε by x, and add the resulting structure to C_κ.

x y z
x = Jones
owns(x, y)
book(y)
z = Smith
adores(z, y)

A constraint on the DRS construction

A problem: The basic DRS construction algorithm can derive DRSes for both of the following sentences, with the indicated anaphoric binding:

(1) [A professor]; recommends a book that she; likes

(2) *She_i recommends a book that [a professor]_i likes

The Highest Triggering Configuration

- If two triggering configurations of one or two different DRS construction rules occur in a reducible condition, then first apply the construction rule to the highest triggering configuration.
- The highest triggering configuration is the one whose top node dominates the top nodes of all other triggering configurations.

Discourse Representation Theory

Denotational Interpretation

Let

- $K = \langle U_K, C_K \rangle$ a DRS
- M = (U_M, V_M) a FOL model structure appropriate for K (i.e., M provides interpretations for all relation symbols occurring in K).
- An embedding of K into M is a function f from U_K to U_M .

Verifying embedding

- An embedding f of K in M verifies K in M iff f verifies every condition $\alpha \in C_{K}$
 - Notation: $f \models_M K$
- **f verifies condition** α **in M** (f $\models_M \alpha$):
 - $f \models_M R(x_1, ..., x_n)$ iff $\langle f(x_1), ..., f(x_n) \rangle \in V_M(R)$
 - $f \models_M x = a$ iff $f(x) = V_M(a)$
 - $f \models_M x = y$ iff f(x) = f(y)

Truth

- Let K be a closed DRS and M be an appropriate model structure for K.
- K is true in M iff there is a verifying embedding f of K in M such that Dom(f) = U_K