
Semantic Theory
Lecture 13: Discourse Semantics I

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

2

A Problem with Definite NPs

Standard type-theoretic representation of definite NPs:

 the ⇒ λFλG∃y[∀x(F(x) ↔ x=y) ∧G(y)]

 the sun ⇒ λG∃y[∀x[sun’(x) ↔ x=y] ∧G(y)]

 the sun is shining ⇒ ∃y[∀x[sun’(x) ↔ x=y) ∧ shine’(y)]

 the student is working ⇒ ∃y[∀x[stud’(x) ↔ x=y) ∧ work’(y)]

3

Context-dependent expressions

■ Deictic expressions depend on the physical utterance
situation:
■ I, you, now, here, this, …

■ Anaphoric expressions refer to the linguistic context /
previous discourse:
■ he, she, it, then, …

4

A simple context theory

■ Model contexts as vectors: sequences of semantically
relevant context data with fixed arity.

■ Model meanings as functions from contexts to
denotations – more specifically, as functions from
specific context components to denotations.

5

An Example
■ Context c = ⟨a, b, l, t, r⟩

■ a speaker

■ b addressee

■ l utterance location

■ t utterance time

■ r referred object

 ⟦I⟧M,g,c = utt(c) = a

 ⟦you⟧M,g,c = adr(c) = b

 ⟦here⟧M,g,c = loc(c) = l

 ⟦now⟧M,g,c = time(c) = t

 ⟦this⟧M,g,c = ref(c) = r

6

Type-theoretic context semantics

■ Model structure: M = ⟨U, C, V⟩
■ U – model universe

■ C – context set

■ V – value assignment function that assigns non-logical
constants functions from contexts to denotations of
appropriate type.

■ Interpretation:
■ ⟦α⟧M,h,c = V(α)(c), if α is a non-logical constant

■ ⟦α⟧M,h,c = h(α), if α is a variable

■ ⟦α(β)⟧M,h,c = ⟦α⟧M,h,c(⟦β⟧M,h,c)

7

An example

■ I am reading this book ⇒ read’(this-book’)(I’)

■ ⟦read’(this-book’)(I’)⟧M,h,c = 1
■ iff ⟦read’⟧M,h,c(⟦this-book’⟧M,h,c)(⟦I’⟧M,h,c) = 1

■ iff V(read’)(ref(c))(utt(c)) = 1

■ Context-invariant expressions are constant functions:
■ V(read’)(c) = V(read’)(c’) for all c, c’ ∈ C

8

Context-dependence of definite NPs

■ Definite NPs pick an appropriate object from context.
■ The student is working

■ ∃y[∀x[student’(x) ↔ x=y) ∧ work’(y)] (??)

■ Utterances typically contain several noun phrases
referring to different objects:
■ The student is reading the book in the library

■ Noun phrases may refer to different objects of the same
type, in one utterance situation:
■ the book

■ the blue book

9

More context-dependent expressions

Semantic context dependence is a pervasive property of
natural language:

(1) Every student must be familiar with the basic
properties of first-order logic

(2) It is hot and sunny everywhere

(3) John always is late

(4) Bill has bought an expensive car

(5) Another one, please!

10

A Problem with Indefinite NPs

 a ⇒ λPλQ∃x[P(x) ∧ Q(x)]

 a student ⇒ λQ∃x[student’(x) ∧ Q(x)]

 a student is working ⇒ ∃x[student’(x) ∧ work’(x)]

11

Indefinite Noun Phrases

■ A student is working
■ ⇒ ∃x[student’(x) ∧ work’(x)]

■ she ⇒ λP.P(x)

■ She is successful ⇒ successful’(x)

■ A student is working. She is successful.
⇒ ∃x[student’(x) ∧ work’(x)] ∧ successful’(x)

■ Indefinite noun phrases establish the context for later
reference, they introduce new reference objects:
■ A student is working. She is successful.

■ Type-theoretic semantics cannot model this effect.

12

Discourse Semantics

■ Natural-language meaning and context interact in two
ways:
■ Context determines the utterance meaning.

■ The meaning of the utterance changes the context.

■ The „context change potential“ is part of the
meaning of natural-language expressions.

■ Division of labor between definite and indefinite NPs:
■ Indefinite NPs introduce new reference objects

■ Definite NPs refer to “old” or “familiar” reference objects

13

Discourse referents

Reference objects established in discourse need not be
specific entities:

If you have a pencil or a ball pen, could you please give it to
me?

Someone – whoever that may be – will eventually find out.
That person will tell others, and everyone will be terribly
upset.

■ A farmer owns a donkey. He beats it.

x y z u

farmer(x)
donkey(y)

owns(x, y)

z = x
u = y

beat(z, u)

Discourse Representation Structures

14

Discourse Referents

Conditions

15

DRS (Preliminary Version)

■ A discourse representation structure (DRS) K is a
pair ⟨UK, CK⟩, where
■ UK is a set of discourse referents

■ CK is a set of conditions

■ Conditions:
■ R(u1, …, un) R an n-place relation, ui ∈ UK

■ u = v u, v ∈ UK

■ u = a u ∈ UK, a is proper name

16

Discourse Representation Theory

Text Σ = ⟨ S1, S2, …, Sn ⟩

Syntactic Analysis P(S1) P(S2) … P(Sn)

DRS Construction K1 K2 … Kn

Interpretation by model
embedding: Truth-
conditions of Σ

■ A farmer owns a donkey. He beats it.

An Example

17

S

NP

DET N NP

DET N

VP

V

A farmer owns

a donkey

■ A farmer owns a donkey. He beats it.

An Example

18

x

farmer(x)
S

x

NP

DET N

VP

V

owns

a donkey

■ A farmer owns a donkey. He beats it.

An Example

19

x y

farmer(x)
donkey(y) S

x

y

VP

V

owns

■ A farmer owns a donkey. He beats it.

An Example

20

x y

farmer(x)
donkey(y)
owns(x, y)

■ A farmer owns a donkey. He beats it.

An Example

21

x y

farmer(x)
donkey(y)
owns(x, y)

S

NP

He NP

it

VP

V

beats

■ A farmer owns a donkey. He beats it.

An Example

22

x y z

farmer(x)
donkey(y)
owns(x, y)
z = x

S

z

NP

it

VP

V

beats

■ A farmer owns a donkey. He beats it.

An Example

23

x y z u
farmer(x)
donkey(y)
owns(x, y)
z = x
u = y

S

z

u

VP

V

beats

■ A farmer owns a donkey. He beats it.

x y z u

An Example

24

farmer(x)
donkey(y)
owns(x, y)
z = x
u = y
beat(z, u)

25

DRS (Basic Version)

■ A discourse representation structure (DRS) K is a pair
⟨UK, CK⟩, where
■ UK is a set of discourse referents

■ CK is a set of (reduced of reducible) conditions

■ Reduced conditions:
■ R(u1, …, un) R an n-place relation, ui ∈ UK

■ u = v u, v ∈ UK

■ u = a u ∈ UK, a is proper name

■ Reducible conditions:
■ Conditions of form α or α(x1, …, xn), where α is a context-free

parse tree.

26

DRS (Basic Version)

■ A discourse referent (DR) u is free in DRS
K = ⟨UK, CK⟩
■ if u is free in one of K’s conditions,

■ and u ∉ UK.

■ A DRS K is closed iff no DR occurs free in K.

■ A reducible (fully reduced) DRS is a DRS which contains
(does not contain) reducible conditions.

27

DRS Construction Algorithm

■ Input:
■ a text Σ = ⟨S1, …, Sn⟩

■ a DRS K0 (= ⟨∅, ∅⟩, by default)

■ Repeat for i = 1, …, n:
■ Add parse tree P(Si) to the conditions of Ki-1.

■ Apply DRS construction rules to reducible conditions of Ki,
until no reduction steps are possible any more.

■ The resulting DRS is Kn , the discourse representation of
text ⟨S1, …, Sn⟩.

28

Construction Rule for Indefinite NPs

■ Triggering Configuration:
■ α is reducible condition in DRS K, containing

[S [NP β] [VP γ]] or [VP [V γ] [NP β]] as a substructure.

■ β is εδ, ε indefinite article

■ Action:
■ Add a new DR x to UK.

■ Replace β in α by x.

■ Add δ(x) to CK.

29

Construction Rule for Pronouns

■ Triggering Configuration:
■ α is reducible condition in DRS K, containing

[S [NP β] [VP γ]] or [VP [V γ] [NP β]] as substructure.

■ β is a personal pronoun.

■ Action:
■ Add a new DR x to UK.

■ Replace β in α by x.

■ Select an appropriate DR y ∈ UK, and add x = y to CK.

30

Construction Rule for Proper Names

■ Triggering Configuration:
■ α is reducible condition in DRS K, containing

[S [NP β] [VP γ]] or [VP [V γ] [NP β]] as substructure.

■ β is a proper name.

■ Action:
■ Add a new DR x to UK.

■ Replace β in α by x.

■ Add x = β to CK.

Relative Clauses

■ Jones owns a book which Smith adores.

31

S

NP

PN NP

DET N

VP

V

Jones owns

a N

book

RC

RPRO S

which NP

PN

VP

V

Smith

NP

∅adores

Relative Clauses

32

x

S

x

NP

DET N

VP

V

owns

a N

book

RC

RPRO S

which NP

PN

VP

V

Smith

NP

∅adores

x = Jones

Relative Clauses

■ Jones owns a book which Smith adores.

33

x y

S

x

y

N(y)

VP

V

owns

N

book

RC

RPRO S

which NP

PN

VP

V

Smith

NP

∅adores

x = Jones

Relative Clauses

■ Jones owns a book which Smith adores.

34

x y

N(y)

N

book

RC

RPRO S

which NP

PN

VP

V

Smith

NP

∅adores

x = Jones
owns(x, y)

35

■ Triggering configuration:
■ α(x) is reducible condition in DRS K, containing

[N’ [N’ β] [RC γ]] as a substructure

■ γ is relative clause of the form δε, where δ is a relative
pronoun and ε a sentence with an NP gap t, δ and t are co-
indexed.

■ Actions:
■ Remove α(x) from CK.

■ Add β(x) to CK .

■ Replace the NP gap in ε by x, and add the resulting
structure to CK.

Construction Rule for Relative

Relative Clauses

■ Jones owns a book which Smith adores.

36

x y

N(y)

N

book

RC

RPRO S

which NP

PN

VP

V

Smith

NP

∅adores

x = Jones
owns(x, y)

Relative Clauses

■ Jones owns a book which Smith adores.

37

x y

x = Jones
owns(x, y)
book(y)

S

NP

PN

VP

V

Smith

NP

yadores

Relative Clauses

■ Jones owns a book which Smith adores.

38

x y z

x = Jones
owns(x, y)
book(y)
z = Smith
adores(z, y)

39

A constraint on the DRS construction

A problem: The basic DRS construction algorithm can derive
DRSes for both of the following sentences, with the
indicated anaphoric binding:

(1) [A professor]i recommends a book that shei likes

(2) *Shei recommends a book that [a professor]i likes

40

The Highest Triggering Configuration

■ If two triggering configurations of one or two different
DRS construction rules occur in a reducible condition,
then first apply the construction rule to the highest
triggering configuration.

■ The highest triggering configuration is the one whose
top node dominates the top nodes of all other triggering
configurations.

41

Discourse Representation Theory

Text Σ = ⟨ S1, S2, …, Sn ⟩

Syntactic Analysis P(S1) P(S2) … P(Sn)

DRS Construction K1 K2 … Kn

Interpretation by model
embedding: Truth-
conditions of Σ

42

Denotational Interpretation

■ Let
■ K = ⟨UK, CK⟩ a DRS

■ M = ⟨UM, VM⟩ a FOL model structure appropriate for K (i.e.,
M provides interpretations for all relation symbols occurring
in K).

■ An embedding of K into M is a function f from UK to UM.

43

Verifying embedding

■ An embedding f of K in M verifies K in M iff f verifies
every condition α ∈ CK
■ Notation: f ⊨M K

■ f verifies condition α in M (f ⊨M α):
■ f ⊨M R(x1, …, xn) iff ⟨f(x1), …, f(xn)⟩ ∈ VM(R)

■ f ⊨M x = a iff f(x) = VM(a)

■ f ⊨M x = y iff f(x) = f(y)

44

Truth

■ Let K be a closed DRS and M be an appropriate model
structure for K.

■ K is true in M iff there is a verifying embedding f of K
in M such that Dom(f) = UK

